5.7   Continental aggregation

      Another level of hierarchy may also be used in this addressing
      scheme to further reduce the amount of routing information
      necessary for inter-continental routing.  Continental aggregation
      is useful because continental boundaries provide natural barriers
      to topological connection and administrative boundaries.  Thus, it
      presents a natural boundary for another level of aggregation of
      inter-domain routing information.  To make use of this, it is
      necessary that each continent be assigned an appropriate subset of
      the address space.  Providers (both direct and indirect) within
      that continent would allocate their addresses from this space.
      Note that there are numerous exceptions to this, in which a
      service provider (either direct or indirect) spans a continental
      division.  These exceptions can be handled similarly to multi-
      homed routing domains, as discussed above.

      Note that, in contrast to the case of providers, the aggregation
      of continental routing information may not be done on the
      continent to which the prefix is allocated.  The cost of inter-
      continental links (and especially trans-oceanic links) is very
      high.  If aggregation is performed on the "near" side of the link,
      then routing information about unreachable destinations within



Rekhter & Li                                                   [Page 18]

RFC 1518          CIDR Address Allocation Architecture    September 1993


      that continent can only reside on that continent.  Alternatively,
      if continental aggregation is done on the "far" side of an inter-
      continental link, the "far" end can perform the aggregation and
      inject it into continental routing.  This means that destinations
      which are part of the continental aggregation, but for which there
      is not a corresponding more specific prefix can be rejected before
      leaving the continent on which they originated.

      For example, suppose that Europe is assigned a prefix of
      <194.0.0.0 254.0.0.0>, such that European routing also contains
      the longer prefixes <194.1.0.0 255.255.0.0> and <194.2.0.0
      255.255.0.0>.  All of the longer European prefixes may be
      advertised across a trans-Atlantic link to North America.  The
      router in North America would then aggregate these routes, and
      only advertise the prefix <194.0.0.0 255.0.0.0> into North
      American routing.  Packets which are destined for 194.1.1.1 would
      traverse North American routing, but would encounter the North
      American router which performed the European aggregation.  If the
      prefix <194.1.0.0 255.255.0.0> is unreachable, the router would
      drop the packet and send an ICMP Unreachable without using the
      trans-Atlantic link.

5.8   Transition Issues

      Allocation of IP addresses based on connectivity to TRDs is
      important to allow scaling of inter-domain routing to an internet
      containing millions of routing domains. However, such address
      allocation based on topology implies that in order to maximize the
      efficiency in routing gained by such allocation, certain changes
      in topology may suggest a change of address.

      Note that an address change need not happen immediately.  A domain
      which has changed service providers may still advertise its prefix
      through its new service provider.  Since upper levels in the
      routing hierarchy will perform routing based on the longest
      prefix, reachability is preserved, although the aggregation and
      scalability of the routing information has greatly diminished.
      Thus, a domain which does change its topology should change
      addresses as soon as convenient.  The timing and mechanics of such
      changes must be the result of agreements between the old service
      provider, the new provider, and the domain.

      This need to allow for change in addresses is a natural,
      inevitable consequence of routing data abstraction. The basic
      notion of routing data abstraction is that there is some
      correspondence between the address and where a system (i.e., a
      routing domain, subnetwork, or end system) is located. Thus if the
      system moves, in some cases the address will have to change. If it



Rekhter & Li                                                   [Page 19]

RFC 1518          CIDR Address Allocation Architecture    September 1993


      were possible to change the connectivity between routing domains
      without changing the addresses, then it would clearly be necessary
      to keep track of the location of that routing domain on an
      individual basis.

      In the short term, due to the rapid growth and increased
      commercialization of the Internet, it is possible that the
      topology may be relatively volatile. This implies that planning
      for address transition is very important. Fortunately, there are a
      number of steps which can be taken to help ease the effort
      required for address transition. A complete description of address
      transition issues is outside of the scope of this paper. However,
      a very brief outline of some transition issues is contained in
      this section.

      Also note that the possible requirement to transition addresses
      based on changes in topology imply that it is valuable to
      anticipate the future topology changes before finalizing a plan
      for address allocation. For example, in the case of a routing
      domain which is initially single-homed, but which is expecting to
      become multi-homed in the future, it may be advantageous to assign
      IP addresses based on the anticipated future topology.

      In general, it will not be practical to transition the IP
      addresses assigned to a routing domain in an instantaneous "change
      the address at midnight" manner. Instead, a gradual transition is
      required in which both the old and the new addresses will remain
      valid for a limited period of time. During the transition period,
      both the old and new addresses are accepted by the end systems in
      the routing domain, and both old and new addresses must result in
      correct routing of packets to the destination.

      During the transition period, it is important that packets using
      the old address be forwarded correctly, even when the topology has
      changed.  This is facilitated by the use of "longest match"
      inter-domain routing.